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Abstract
Quantum cascade structures have found extensive application in electrically
driven semiconductor lasers working in the mid- to far-infrared spectral range.
Optical amplification in such unipolar devices is based on a population inversion
between quasi-two-dimensional conduction subbands in coupled quantum
wells. The population inversion in the active region is generated by electrons
tunnelling from an injector region through a barrier into the upper laser subband
and by ultrafast extraction of these electrons out of the lower laser subband
through a barrier into the next injector region. Such transport processes
on ultrafast timescales have been the subject of extensive experimental and
theoretical work without, however, reaching a clear physical picture of the
microscopic electron dynamics. In this review, we report a comprehensive
experimental study of electron transport in electrically driven quantum cascade
structures. Ultrafast quantum transport from the injector into the upper laser
subband is investigated by mid-infrared pump–probe experiments directly
monitoring the femtosecond saturation and subsequent recovery of electrically
induced optical gain. For low current densities, low lattice temperatures
and low pump pulse intensities, the charge transport is dominantly coherent,
leading to pronounced gain oscillations due to the coherent motion of electron
wavepackets. For higher current densities, lattice temperatures, or pump
intensities, the gain recovery shows an additional incoherent component, which
essentially follows the pump-induced heating and subsequent cooling of the
carrier gas in the injector.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Carrier transport in external electric fields has been a topic of research since the early days
of semiconductor physics. Different regimes of electron and hole transport, e.g., drift-
diffusive motion, hopping processes and ballistic motion, have been identified for a large
variety of systems and an analysis of their basic microscopic interactions has been given.
Quantum coherent transport processes, which are governed by the wave nature of electrons,
represent a particularly interesting class of phenomena, which have been studied mainly in low-
dimensional semiconductors such as quantum wells and superlattices [1–9]. Quantum coherent
transport is connected with a nonstationary superposition of the wavefunctions of different
electronic states, i.e., with the formation of electron wavepackets. Wavepacket motions
underlie coherent tunnelling through barriers and—in a periodic form—charge oscillations
in quantum wells [10] and Bloch oscillations in superlattices [11, 12].

Coherent carrier motions are destroyed by scattering processes within the carrier gas
and by scattering with acoustic and optical phonons, resulting in decoherence, i.e., in the
destruction of the quantum mechanical phase. For very low electron densities and extremely
low temperatures, decoherence can be suppressed to a large extent. In this regime, basic
processes of quantum transport have been discovered and analysed in great detail. For
elevated carrier densities or for higher temperatures—regimes typical for most semiconductor
devices—quantum coherence is limited to femtosecond or picosecond periods of time. Under
such conditions, ultrafast optical techniques allow for the real-time observation of carrier
dynamics, which are monitored through nonlinear changes of the steady-state optical properties
of the system under investigation. Optical excitation of low-dimensional semiconductors by
femtosecond optical pulses allows for the preparation of electron wavepackets with well-
defined properties. Both unidirectional and periodic wavepacket motions persisting for up to
several picoseconds have been temporally resolved [10–13].

The decoherence processes limiting quantum coherent transport at elevated carrier
densities are far from being understood. Most experiments were performed with interband
excitation of excitons or free carriers at a fixed density. Apart from the difficulty of separating
electron and hole motions, carrier–carrier scattering mediated through the long-range Coulomb
interaction has remained a major issue [14, 15]. A quantitative theoretical description of
decoherence by carrier–carrier scattering is still lacking. Qualitative information has been
derived from experimental studies of Bloch oscillations, where oscillatory motions were found
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Figure 1. A conduction band diagram of the GaAs/Al0.33Ga0.67As quantum cascade laser structure
(sample A). Probability densities |�(z)|2 are shown for the wavefunctions relevant for the QCL
dynamics: |g〉 (ground state in the injector), |3〉 (upper laser state), |2〉 (lower laser state) and |1〉 are
eigenstates of the electronic Hamiltonian without the tunnel coupling through the injection barrier
(the wide barrier to the left of the active region).

for electron concentrations of up to several 109 cm−2. In contrast, a rapid damping of Bloch
oscillations occurs at higher carrier densities [16].

Low-dimensional semiconductors, in which unipolar transport of electrons or holes can
be induced by ultrafast optical excitation and followed by optical techniques, are particularly
promising structures for investigating the issues outlined above. The quantum cascade laser
(QCL) [17–21] represents such a structure in which electrons are transferred from an electron
reservoir, the so-called injector region, through the injection barrier into the optically active
region (figure 1). Under steady-state electric bias in forward direction, a population inversion
builds up between subbands 3 and 2, resulting in optical gain and laser action on the 3 ↔ 2
intersubband (IS) transition. Subband 2 is depopulated very efficiently by emission of
longitudinal optical phonons, transferring carriers into energetically lower subbands, e.g., into
subband 1. Electrons leave the active region by tunnelling through a thin exit barrier into the
next injector region. Interaction with ultrashort optical pulses resonant to the 3 ↔ 2 transition
allows one to change the population inversion transiently and to follow the time evolution of
optical gain. Since the populations of the optically coupled levels are inherently linked to the
transport through the structure, such measurements directly reflect the transport dynamics.

In this article, we review recent experiments [22–25] in which coherent electron transport
in quantum cascade structures has been studied by ultrafast spectroscopy. Such studies have
provided clear evidence for the quantum coherent character of electron motion from the injector
into the active region. They demonstrate how the microscopic injection process depends on
the design parameters of the quantum cascade structure and on external parameters such as the
injection current or the lattice temperature. This review is organized as follows. In section 2,
we summarize previous work on electron transport in quantum cascade structures; this is
followed by a brief discussion of the basic properties of optical intersubband transitions. The
experimental techniques used in our study are discussed in section 3. The experimental results
and their analysis are presented in section 4. We start with a phenomenological description
(section 4.1), which is followed by an in-depth study of electron transport as a function of
different structural parameters of the quantum cascade samples and of external parameters in
the experiments (section 4.2). A summary is given in section 5.
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Figure 2. Schematics of the structure considered in the work of Kazarinov and Suris [26, 27]. 2h̄�

is the coupling between subsequent quantum wells. It is assumed that τ2, the electron lifetime in
subband 2, is much less than τ3, the electron lifetime in subband 3.

2. Quantum cascade structures: electron transport and optical properties

2.1. Electron transport in quantum cascade structures

Theoretical work on electron transport in electrically driven superlattices began with the
seminal work of Kazarinov and Suris in 1971 [26, 27]. They considered vertical transport
through such structures, i.e., the electron motion perpendicular to the quasi-two-dimensional
layers, which is equivalent to tunnelling through a sequence of barriers. Using a density matrix
approach in the tight binding approximation, they calculated current–voltage characteristics
and predicted the occurrence of a negative differential resistance under appropriate bias.

In the nomenclature used nowadays for quantum cascade lasers, Kazarinov and
Suris [26, 27] obtained the following result for the current density j (see figure 2 in the
limit of τ2 � τ3):

j = eNs
2|�|2T2

1 + (
Eg−E3

h̄ )2T 2
2 + 4|�|2T2τ3

, (1)

where Eg − E3 is the energy detuning from resonance between the subbands g and 3, which
depends on the applied bias, Ns is the sheet electron density in the injector, 2h̄� is the tunnel
coupling, T2 is the irreversible dephasing time of the g ↔ 3 intersubband polarization and τ3

is the population lifetime of subband 3. At an appropriate bias Vres, subband g is in resonance
with subband 3, i.e., Eg − E3 = 0, and the maximum current density

jmax = eNs
2|�|2T2

1 + 4|�|2T2τ3
(2)

is obtained. Increasing the bias further, equation (1) predicts a decrease of the current. Thus,
there should exist a region with negative differential resistance above the resonance [9].

Sirtori et al [28] studied the resonant alignment of subbands g and 3,which is a prerequisite
for resonant tunnelling through the injection barrier. They measured the voltage (V –I curve)
and light output power (L–I curve) as a function of injection current for various GaInAs/AlInAs
quantum cascade devices (figure 3 in [28]). The authors interpreted specific features in the
V –I curve as an indication of resonant tunnelling through the injection barrier, arising from
the alignment of subbands 3 and g. The theoretically predicted negative differential resistance
was not observed. This was attributed to

(i) the comparably high impedance of the electric circuitry used in the experiments, which
was much bigger than |dV/d I |, and to
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(ii) structural inhomogeneities washing out any pronounced structures in the V –I
characteristics.

More recent results, presumably obtained with better-quality samples, indeed show a region
with the theoretically predicted negative differential resistance [29].

Further support for the picture of a resonant alignment of subbands 3 and g for
an appropriate bias comes from measurements of Barbieri et al [30]. They studied
electroluminescence (EL) spectra of GaAs/AlGaAs quantum cascade laser structures without
a resonator. The lineshape of this luminescence, which originates from transitions between
subbands 3 and 2, is sensitive to the tunnel splitting caused by a resonant coupling of subbands
3 and g. Such a coupling should lead to two distinct emission peaks, separated by the tunnel
splitting 2h̄�. Although it was not possible to observe two distinct peaks because of the
strong homogeneous and inhomogeneous broadening of the band, the width of the emission
band displays an increase with decreasing barrier width, in good agreement with the calculated
tunnel splitting 2h̄�. An indication of resonant alignment was also obtained from photocurrent
and electroluminescence measurements by Wilson et al [31, 32].

The role of the dephasing time T2 for transport through the injection barrier was
investigated by Sirtori et al [28]. Using the calculations of Kazarinov and Suris (equation (2))
they identified two different transport regimes depending on the magnitude of the quantity
Q = 4|�|2T2τ3. For Q � 1 we have weak coupling between injector and active region,
for Q � 1 strong coupling. The weak-coupling regime implies that the dephasing time
T2, which is assumed to be similar to τ3, is much shorter than the inverse tunnelling rate
(2�)−1. In this limit, the current density is strongly reduced by the dephasing of the g ↔ 3
intersubband coherence, leading to a maximum current density of jmax = eNs2|�|2T2. In the
strong-coupling regime (Q � 1), the transport through the injection barrier is dominated by
resonant tunnelling. The maximum current density in this case is given by jmax = eNs/(2τ3),
i.e., the current density is controlled by the lifetime τ3 of subband 3. This is considered ‘the
configuration in which we want to operate the lasers in order to always ensure very fast electron
injection into the upper laser state (n = 3), without being limited by the tunnelling rate’ [28].

To calculate the quantity Q, the dephasing time T2 is needed. Since no experimental values
are available, T2 was estimated from the electroluminescencewidth, giving a value of T2 ≈ 50–
100 fs [28]. However, this only gives a lower limit for T2, since the electroluminescence width
is not only determined by the dephasing time T2, which is the dephasing time of coherent
superpositions of states in subband g and subband 3, but also by the energy splitting 2h̄�, by
the 3–2 intersubband dephasing and by structural inhomogeneities. As a consequence, T2 may
be considerably longer than the value obtained from the electroluminescence width. Assuming
a dephasing time of T2 = 100 fs results in values of Q between 0.7 and 11.6 for different laser
devices. This suggests that most of the QCLs investigated work in between the strong- and the
weak-coupling regimes and, hence, that the transport from the injector into the active region
cannot be described in a strictly coherent picture. If, however, T2 is considerably longer, most
QCLs would operate in the strong-coupling regime.

To clarify the role of coherence in charge transport, Iotti and Rossi [7, 33, 34] carried
out semiclassical Monte Carlo simulations taking into account carrier–carrier and carrier–
phonon scattering. From their calculations they derived voltage–current characteristics in good
agreement with experimental data. Moreover, voltage–current characteristics were calculated
with a quantum mechanical density matrix approach neglecting carrier–carrier scattering.
This model gives similar results to the semiclassical calculation. This agreement led to
the conclusion that the semiclassical picture, in which quantum coherences are neglected,
is sufficient to describe transport processes in quantum cascade laser. The authors claimed that
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‘energy-relaxation and dephasing processes are strong enough to destroy any phase-coherence
effect on a sub-picosecond timescale’ [7].

It is important to note that the voltage–current characteristic is a macroscopic phenomenon,
reflecting the global properties of transport through the entire structure. The properties of
microscopic transport, e.g., transport through the injection barrier, are very difficult to derive
from such measurements. In contrast, a full quantum calculation including the microscopic
dephasing by scattering processes is needed to account properly for the tunnelling processes.
From this point of view, it is not surprising that the analysis of current–voltage characteristics
has led to somewhat conflicting results. In addition to an appropriate theoretical treatment,
experimental techniques probing the degree of quantum coherence in electron injection are
required. In section 4, we demonstrate that ultrafast nonlinear spectroscopy gives direct and
detailed insight into this issue.

2.2. Optical intersubband transitions and carrier relaxation after intersubband excitation

Optical gain in quantum cascade lasers relies on optical intersubband transitions of electrons.
Such transitions have been studied extensively in heterostructures and quantum wells. Both
the strength and shape of the linear absorption spectra and the underlying carrier dynamics
have been addressed. Intersubband dipole transitions occur between subbands with different
envelope wavefunctions for the quantized carrier motion. The intersubband dipole moment
has a direction perpendicular to the quantum well layers. Since the envelope wavefunctions
extend over the width of the quantum well (typical dimensions are 10 nm), the dipole moments
can reach very high values. The in-plane dispersion of conduction subbands in quantum wells
is nearly parallel, resulting in an intersubband transition energy practically independent of
the in-plane wavevector of the electrons2. This fact results in a δ-like joint density of states
for the optical transition, if one neglects broadening mechanisms and many-body effects.
Moreover, intrasubband redistribution of electrons plays a minor role for gain dynamics, since
all electrons contribute to emission at a single spectral position. Narrow absorption lines
of approximately 3 meV width have been observed for electron concentrations lower than
5 × 1010 cm−2 in GaAs/AlGaAs quantum wells of high structural quality [35]3. For higher
electron concentrations, many-body effects mediated by the long-range Coulomb interaction
come into play and alter both the position and the lineshape of the intersubband transition. A
brief review of such many-body effects has been given in [36].

There are several mechanisms contributing to the width of intersubband absorption lines.
Femtosecond photon echo experiments [35], in which the dynamics of coherent intersubband
polarizations was followed in real time, have demonstrated that the intersubband absorption
lines in high-quality GaAs/AlGaAs quantum wells are predominantly homogeneously
broadened. The dephasing times, which are determined mainly by carrier–carrier scattering,
are of the order of several hundred femtoseconds. Such dephasing times translate into
homogeneous linewidths of several millielectronvolts. In samples containing structural
disorder, e.g., quantum well thickness or alloy fluctuations, a distribution of transition energies
results in additional inhomogeneous broadening.

The population lifetime of electrons in higher (n > 1) subbands has values between several
hundreds of femtoseconds and several tens of picoseconds. For an energy separation of the

2 The subbands would be exactly parallel if the band dispersion was parabolic. As the conduction band nonparabolicity
in GaAs is quite small, it is of minor importance for GaAs/AlGaAs quantum wells. For other materials, e.g., InSb,
nonparabolicity plays an important role.
3 Even narrower lines are found if the subband separation is below the optical phonon energy, preventing optical
phonon scattering.
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Figure 3. The experimental concept for the ultrafast electron transport measurement. (a) Under
forward bias the electronic system is in a quasi-stationary nonequilibrium state. (b) A strong
pump pulse depletes the electrically induced optical gain and (c) a weak probe pulse monitors the
subsequent gain recovery.

optically coupled subbands larger than the energy of optical phonons, intersubband phonon
scattering via the polar–optical interaction—in nonpolar systems such as Si or Ge via the
optical deformation potential—represents the predominant relaxation mechanism, resulting in
lifetimes less than a few picoseconds. For small subband separations, carrier–carrier scattering
and—to a lesser extent—acoustic phonon scattering govern the population relaxation on a
timescale of up to tens of picoseconds.

Intersubband scattering is followed by carrier thermalization, i.e., by the formation of a
carrier distribution that can be described by a common carrier temperature, which is higher
than the lattice temperature. The time needed to obtain such a thermalized carrier distribution
depends on the electron concentration, the fraction of electrons excited and on the excess
energy of the back-scattered carriers, which is given by the intersubband transition energy. In
most cases, thermalization occurs on a timescale between 100 fs and 2 ps. Eventually, the hot
carrier gas is cooled to lattice temperature, which means that the excess energy contained in
the carrier gas is transferred to the lattice by emission of optical and acoustic phonons. In most
cases, the cooling of the carrier gas occurs on a timescale of several ten picoseconds. The
exact value depends on the amount of excess energy and on the lattice temperature. A review
of carrier relaxation after intersubband excitation has been presented in [36].

The relaxation scenario described in this section has been derived from measurements
with quantum wells, into which electrons were introduced by (modulation) doping. In such
cases, a stationary equilibrium distribution of electrons in the lowest subband defines the
system prior to intersubband excitation. In electrically biased quantum cascade structures, a
much more complex situation exists: carrier injection on a timescale long compared to the
microscopic transport and scattering processes generates a quasi-stationary nonequilibrium
distribution [9], in which transport through barriers, i.e., real-space transfer, occurs on similar
ultrafast timescales to carrier relaxation. So far, the intrinsic nonequilibrium dynamics under
such conditions has remained mainly unexplored.

3. Experimental techniques

A real-time study of electron transport in quantum cascade structures requires femtosecond
time resolution, i.e., it has to rely on optical techniques. The experiments reviewed here are
based on a pump–probe scheme illustrated schematically in figure 3. The quantum cascade
structure is held under forward bias, generating a quasi-stationary electron distribution in the
sample (figure 3(a)). A strong pump pulse, resonant to the laser transition between subbands
3 and 2, depletes the electrically induced optical gain (figure 3(b)) via stimulated emission,
promoting carriers from subband 3 into subband 2. A weak probe pulse at the same spectral
position monitors the subsequent gain recovery (figure 3(c)) as a function of the pump–probe
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Figure 4. The experimental set-up for femtosecond pump–probe measurements on electrically
driven quantum cascade laser structures. Mid-infrared pulses (λ = 10 µm, pulse duration: 130 fs)
are split into intense pump and weak probe pulses (intensity ratio 30:1). Subsequently they are
focused onto the quantum cascade structure in the cryostat. The probe pulses are spectrally resolved
(resolution 0.15 µm) after interaction with the sample. The pump–probe experiment is carried out
within the time frame of 100 ns long current pulses of variable amplitude. Further shown is the
geometry of beam propagation through the prism-shaped sample and the overlap between the
mid-infrared laser spot and the disc-shaped quantum cascade structure (shown is the situation for
sample A; in samples B and C the quantum cascade structure has elliptical shape, leading to an
even better overlap with the laser spot).

delay tD. The gain is proportional to the population difference between subbands 3 and 2 and
gives direct information on the transport of electrons into subband 3 and out of subband 2.

The experimental set-up is shown schematically in figure 4. Mid-infrared pulses (centred
at 10 µm, 130 fs duration, bandwidth 1.5 µm, repetition rate 1 kHz) are generated by difference
frequency mixing in a GaSe crystal [37]. They are split into intense pump and weak probe
pulses. A translation stage allows one to adjust the temporal delay between pump and probe
pulses. Both pulses are subsequently focused onto the quantum cascade structure. After
interaction with the sample the probe pulses are spectrally dispersed (resolution: 0.15 µm)
and detected with a cooled HgCdTe detector. For an optimal coupling of the incident light
pulses with the p-polarized intersubband gain, we use a 60◦ prism geometry. The samples
were processed into mesas either of circular shape with a diameter of 350 µm (sample A) or of
elliptical shape with dimensions of 200 µm × 400 µm (samples B and C). These sizes allow
for a sufficient overlap with the elliptically shaped beam profile in the plane of the quantum
cascade structure and keep at the same time the total current at reasonably small values (<10 A)
(see the discussion in [38]). The electric current is applied in the form of rectangular 100 ns
long pulses of variable amplitude synchronized with the optical pulses.

Even using rather large mesa dimensions, a non-negligible amount of pump light is
scattered from the mesa onto the probe detector. Scanning the delay between pump and probe,
this scattered light leads to large interference fringes in the pump–probe signal. Suppressing
these interference fringes is possible by modulation of the current pulses: we apply current
pulses only for every second optical pulse and subtract from the pump–probe signal with current
that obtained without current. Hence, the resulting transients represent the current-induced
transmission change for the probe as a function of the time delay between pump and probe
pulses.
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Table 1. Parameters for the GaAs/Alx Ga1−x As samples A, B and C. The data for �Ec (conduction
band offset), τ2 and τ3 are taken from [39, 40].

A B C

Nominal Al fraction (%) 33 45
Injection barrier width (nm) 6.2 4.0 4.6
Exit barrier width (nm) 3.4 2.8
Number of periods 10 10
Sheet density per period (cm−2) 4 × 1011 4 × 1011

�Ec (meV) 295 390
τ2 (ps) 0.3 0.3
τ3 (ps) 1.5 1.4
Mesa shape Circular Elliptical
Mesa dimensions Diameter 350 µm 200 µm × 400 µm

Time-resolved experiments were carried out on three different samples. The parameters
of the samples are summarized in table 1. Sample A is a GaAs/AlxGa1−x As quantum cascade
structure (aluminium content: x = 33%) grown at Thales-CSF (previously Thomson) in Paris.
It contains ten periods of the active layer structure, similar to the one in [39], and represents
the layer structure of the first quantum cascade laser based on the GaAs/AlxGa1−x As material
system.

The conduction band diagram of the active region and the relevant wavefunctions of
sample A are shown in figure 1. The active region consists of three coupled GaAs quantum
wells. The injector is a graded superlattice containing five coupled GaAs quantum wells. The
injector region and the active region are separated by a 6.2 nm thick AlGaAs injection barrier
and a 3.4 nm thick AlGaAs exit barrier. To reduce the lifetime of subband 2 (lower laser states),
the 1–2 subband spacing corresponds to the energy of an LO phonon (h̄ωLO = 36 meV). The
calculated lifetimes of subband 3 and subband 2 are τ3 = 1.5 ps and τ2 = 0.3 ps [39].

Samples B and C were grown at the Technical University of Vienna. The layer structures
of these samples are similar to that of the GaAs/Alx Ga1−x As quantum cascade laser presented
in [40], the first GaAs-based quantum cascade laser operating at room temperature. The
aluminium content of this structure is x = 45%. The conduction band offset �Ec ≈ 390 meV
for �-valley electrons at this aluminium content is 95 meV higher than the offset at 33%
aluminium content [40]. The active region consists of three GaAs quantum wells and the
injector contains five GaAs quantum wells, i.e., the layer sequence is the same as for sample A
(figure 1). The calculated lifetimes of subband 3 and subband 2 are τ3 = 1.4 ps and
τ2 = 0.3 ps [40]. The only difference between samples B and C is the thickness db of
the injection barrier, which is db = 4.0 nm for sample B and db = 4.6 nm for sample C.

4. Time-resolved studies of electron transport

4.1. Oscillatory electron transport

Our experiments reveal a prototypical oscillatory behaviour of electron transport after gain
saturation. The basic features observed and a qualitative explanation are presented in this
section.

Sample A, which has the conduction band diagram shown in figure 1, displays
electroluminescence at wavelengths around λ = 10 µm for a current density of j = 7 kA cm−2

(figure 5 (f)). This spontaneous emission is due to optical transitions between subbands 3 and
2 in the active region (figure 1).
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Figure 5. (a)–(d) Symbols: pump–probe transients obtained from sample A at various detection
wavelengths λdet (see the arrows in (f)) for a current density of 7 kA cm−2 and a lattice temperature
of 10 K. The pump pulse energy is 2.5 nJ and the probe pulse energy is 75 pJ. The current-induced
optical transmission change �T/T0 is plotted as a function of the time delay tD between pump
and probe pulses. Solid lines: exponentially decaying cosine function (a) or decaying exponential
functions ((c) and (d)) convoluted with the cross-correlation between pump and probe. (e) Fourier
transforms of transients (a) and (b). (f) Electroluminescence spectrum for a current density of
7 kA cm−2 (solid curve) and spectrum of pump and probe pulses (dashed curve).

In figure 5, femtosecond transients are shown for various detection wavelengths λdet (see
the arrows in figure 5(f)). The current-induced optical transmission change �T/T0(tD) =
[T ( j, tD) − T ( j = 0, tD)]/T ( j = 0, tD) is plotted as a function of the time delay between
pump and probe pulses. T ( j, tD) is the transmission of the sample for a current density j
and a pump–probe delay tD. The sample temperature is held at 10 K, and the pulse energies
of the pump and probe are 2.5 nJ and 75 pJ, respectively. The pump has sufficient energy
to completely deplete the current-induced gain, whereas the probe is in the regime of linear
response. In figures 5(a) and (b), we show experimental results for detection wavelengths
resonant to the 3 ↔ 2 transition, where the unbiased quantum cascade structure is transparent.
At negative delay times, all transients show a finite increase of transmission, which is due
to stimulated emission on the 3 ↔ 2 transition, i.e., to current-induced gain [38]. In
figure 5(a), an ultrafast saturation of the current-induced gain occurs at time delay zero,
followed by an oscillation with a period of ≈500 fs and a decay rate of 3–4 ps−1. The
Fourier transform of this transient (figure 5(e)) exhibits a peak centred at 2 THz. Tuning the
detection wavelength to the electroluminescence maximum λdet = 10 µm (figure 5(b)) we find
an oscillation with larger amplitude and identical frequency (compare the Fourier transforms
in figure 5(e)). In contrast, for detection wavelengths outside the electroluminescence band,
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Figure 6. (a), (b) Symbols: pump–probe transients of the gain saturation and recovery for samples
B (injection barrier db = 4.0 nm) and C (db = 4.6 nm) measured at a detection wavelength of
λdet = 9.0 µm for a current density of j = 4.8 kA cm−2 and a lattice temperature of TL = 150 K.
The pump pulse energy is 0.75 nJ and the probe pulse energy is 75 pJ. The pump pulse is centred at
9.0 µm. Solid curves: gradually rising and decaying component of the signal obtained by a low-
pass Fourier filter. (c), (d) Symbols: oscillatory component of the pump–probe signal extracted
by subtracting the slowly varying non-oscillating component (curves in (a) and (b)). Solid lines:
exponentially decaying cosine fit functions. (e), (f) Fourier transforms of the oscillatory components
shown in (c) and (d).

the transients follow a different dynamics (figures 5(c) and (d)): upon femtosecond excitation,
the transmission increases within the time resolution and decays subsequently with a decay
time strongly depending on λdet . In particular, there are no oscillatory features for tD > 0.
(The modulation on the transient in figure 5(c) is caused by the coherent coupling of pump
and probe pulses [41]4.) Those pump–probe signals outside the electroluminescence band
stem from various intersubband transitions within the injector. The absorption coefficients of
such intersubband transitions within the injector are typically much larger and have a stronger
electric field dependence than the laser transition [42]. In the following we will concentrate
exclusively on spectral positions dominated by the electrically induced gain.

The gain oscillation for forward bias shows a pronounced dependence on the width and
height of the injection barrier. In figures 6(a) and (b), pump–probe transients are shown for

4 Components from different interaction sequences of pump and probe fields can contribute to pseudo-two-colour
pump–probe signals (see, e.g. [41]): (i) perturbed free induction decay, (ii) coherent pump–probe coupling and (iii)
strictly sequential pump probe interaction. Whereas (i) and (ii) contribute only at negative delay times and during
pump–probe overlap (tD < 70 fs), the dynamics of both population differences and quantum coherences can be
unambiguously observed in the period (iii) (tD > 70 fs).
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Figure 7. A schematic diagram of the coherent transport of electrons from the ground state in the
injector |g〉 into the upper laser state |3〉 in the dynamic picture of resonant tunnelling. |b〉 and |a〉
are binding and anti-binding energy eigenstates of the electronic Hamiltonian including the tunnel
coupling; |g〉 and |3〉 are coherent superpositions of |b〉 and |a〉.

sample B with a thin injection barrier (db = 4.0 nm) and for sample C with a thick injection
barrier (db = 4.6 nm). For better comparison we have subtracted in figures 6(c) and (d)
the slowly varying contribution of the signal. The two transients display distinctly different
oscillation periods, as can be seen directly from the transients in figures 6 (c) and (d) and also
from the Fourier transforms in figures 6(e) and (f).

The time evolution of gain saturation and recovery directly reflects the underlying
transport dynamics of electrons in the quantum cascade structure. Transport in a quantum
cascade structure represents a quasi-stationary nonequilibrium state of the electron gas [9],
which is governed both by tunnelling and by energy and phase relaxation of electrons via
scattering processes (disorder, electron–phonon and electron–electron scattering). In contrast
to an equilibrium state, this quasi-stationary nonequilibrium state contains nonstationary,
propagating wavefunctions made up of coherent superpositions of different electronic
eigenstates.

The transients measured at wavelengths where stimulated emission dominates the
nonlinear transmission changes (figures 5 and 6) show three dominant features for positive
time delays, i.e., during gain recovery: (i) a pronounced oscillation, (ii) a strong damping of
the oscillation and (iii) at half the oscillation period a prominent gain increase well above the
quasi-stationary level. These three features will be discussed in the following.

(i) Transport oscillation through the injection barrier. Gain saturation by the intense mid-
infrared pump pulse leads to a strong reduction of the electron population of subband 3,
which is subsequently compensated for by transferring electrons from the injector region
through the injection barrier into subband 3. Under quasi-stationary conditions, subband
2 is essentially unpopulated, since electrons leave this subband very quickly by resonant
LO phonon emission into subband 2 and transfer to the strongly coupled miniband of
the next injector region. Therefore, the contribution from subband 2 to the nonlinear
pump–probe signal is negligible for tD > 100 fs.5 Consequently, the gain saturation and
recovery dynamics is dominated by the population dynamics in the upper laser subband
3. Our data clearly demonstrate the oscillatory character of electron motion after gain
saturation. This behaviour gives evidence for coherent resonant tunnelling of electrons
through the injection barrier, as suggested in the theoretical work of [26, 27]. It is depicted
schematically in figure 7: under bias, the subbands |g〉 and |3〉 are in resonance and the

5 Due to the huge bandwidth (≈60 meV) of the injector miniband and to the resonant optical phonon coupling
between state |2〉 and other injector states the electron wavepacket leaves its initial position in the widest quantum
well extremely fast (<50 fs) and loses phase coherence within the time resolution of our experiment.
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tunnel coupling forms binding |b〉 and anti-binding |a〉 energy eigenstates, which are
energetically split6 by �Eab = 2h̄�. The size of this splitting is determined by the width
and height of the injection barrier and by the applied voltage. Since the voltage across
the quantum cascade structure is nearly constant for high enough current densities [39],
�Eab is independent of current density for j � 1 kA cm−2. Coherent superpositions of
states |a〉 and |b〉 represent the basis for wavepacket propagation from the injector ground
state |g〉 into the upper laser state |3〉. In the experiment, the femtosecond pump pulse
depletes the subband |3〉 = √

1/2 (|b〉–|a〉), and initiates a coherent wavepacket motion,
by which electrons initially residing in the injector tunnel through the injection barrier
into the active region. According to the energy splitting �Eab between the binding and
anti-binding energy eigenstates |b〉 and |a〉, the tunnelling carriers arrive after half the
oscillation period Tosc = h/�Eab in the state |3〉 of the active region. As the electron
lifetime in state |3〉 (τ3 ≈ 1 ps) is substantially longer than the oscillation period Tosc

(see figures 5 and 6), most of the electrons will move back into the injector resulting in a
gain depletion around tD = Tosc. This picture of coherent transport is strongly supported
by comparing the results for the three different samples. The data for sample B and C
(figure 6) demonstrate that for identical barrier height the oscillation period increases with
increasing barrier width, i.e., with decreasing tunnel splitting. Inspection of the data in
figure 6 gives a ratio of oscillation frequencies νB/νC � 1.6, in good agreement with
results from eight-band k · p band structure calculations. Sample A contains a lower
injection barrier (reduced Al content), which has, however, a larger width of db = 6.2 nm,
resulting in an oscillation period similar to sample C.

(ii) Damping of the oscillatory electron motion. The fact that one observes one full oscillation
period sets a lower limit for the homogeneous dephasing of the wavepacket motion close
to the oscillation period: T2 � Tosc. This definitely rules out sub-100 fs dephasing
times, which were derived indirectly from current–voltage measurements [28], as already
mentioned in section 2.1. There are two mechanisms damping the oscillatory electron
motion. First, there is inhomogeneous broadening of the tunnel couplings due to
injection barrier width and height fluctuations. This results in a destructive interference
of oscillations of different frequencies. Second, there is homogeneous dephasing, mainly
by Coulomb scattering in the dense electron gas in the injector, which has a density of
4×1011 cm−2. Recent Monte Carlo simulations of quantum cascade lasers give rather high
electron–electron scattering rates �10 ps−1 [33], much larger than 1/Tosc. Obviously, as
we find that T2 is much longer than the time between two scattering events, only a fraction
of scattering events can lead to a dephasing of the coherent superposition of states |a〉
and |b〉. This is in contrast to Fermi’s golden rule, which assumes that every scattering
event leads to a complete loss of all phase coherences. This is equivalent to assuming
that particles are scattered only into eigenstates of the unperturbed Hamiltonian. On
short timescales, however, quantum mechanics allows also coherent superpositions of
such final states, a concept known as scattering-induced coherence [43, 44]: at scattering
rates higher than 1/Tosc, electrons are mainly redistributed between states localized in
the injector. The coherent superposition |g〉 of the electronic eigenstates |a〉 and |b〉 is
among such localized states. As a result, scattering events populating |g〉 on a timescale
much faster than Tosc generate a coherent excitation in phase with the oscillation induced
by the pump pulse. Such an intraband coherence after energy relaxation was previously
observed for Bloch oscillations at much lower electron densities [45]. After the decay of

6 In principle, this picture implies a doublet structure of the electroluminescence (EL) spectrum. However, the strong
broadening of the EL spectra (see the inset of figure 5) smears out such a line structure [30].
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the coherence between states |a〉 and |b〉 (for tD > 500 fs), the optical gain returns to its
quasi-stationary value by incoherent processes.

(iii) Transient gain overshoot and scattering-induced coherence. The gain overshoot observed
at half the oscillation period (figures 5 and 6) gives additional evidence for this picture.
Right after the gain depletion, electrons in state |g〉 tunnel from the injector into the
active region. This depletion in the |g〉 subband recovers on a timescale faster than the
oscillation period, allowing for additional electrons to contribute in phase to the oscillatory
gain, which is temporarily much higher than the quasi-stationary value.

4.2. Quantitative analysis of coherent electron motion

After explaining the basic features of the coherent electron transport observed, we now present
a systematic study of the amplitude, the frequency and the damping of the oscillatory electron
motion as a function of three different parameters: the current density j , the lattice temperature
TL and the excitation density generated by the mid-infrared pump pulse.

For a systematic analysis, the oscillatory components of the pump–probe signals must be
separated from other incoherent signal contributions. The Fourier transforms of the complete
transients (see figure 5(e)) typically show two features: (i) a pronounced peak at the transport
oscillation frequency and (ii) a narrow peak centred around ν = 0 which is caused both by
the stationary electrically induced gain and by an additional, slowly varying component of
gain saturation and recovery typically dominating at late time delays (figures 6(a) and (b)). To
isolate the incoherent signal contributions, the time-resolved data are Fourier transformed; the
low-frequency part of the spectrum is selected by an appropriate low-pass filter and transformed
back into the time domain by an inverse Fourier transform. We use a Gaussian filter centred
at ν = 0 with an appropriately chosen bandwidth given by the spectral position of the dip
between the two maxima (see, e.g., the open circles in figure 5(e)). The result of such a
procedure is shown in figure 6. The solid curves in figures 6(a) and (b) show the measured
pump–probe transients of samples B and C. The dashed lines represent the gradually rising
and decaying component of the respective transient after applying the low-pass Fourier filter.
The solid curves in figures 6(c) and (d) show the oscillatory component of the pump–probe
signal, which is obtained by subtracting the slowly varying non-oscillating component. In
figures 6(e) and (f) we show the Fourier transforms (symbols) of the oscillatory components.

After the oscillatory components have been extracted in this way, the data are subject to the
following analysis: for positive delay times tD > 0, an exponentially decaying cosine function
(after convolution with the cross-correlation of pump and probe pulses) with amplitude A,
angular frequency ωab and damping rate γab is fitted to the data. The fit curves and their
Fourier transforms for the data of figures 6(a) and (b) are shown as solid curves in figures 6(c)–
(f). This procedure gives reliable estimates for the values of A, ωab and γab. It should be
noted, however, that the absolute values derived display some uncertainty originating from the
limited accuracy of the subtraction procedure, in particular when comparing different samples.
The ratios of such values measured for a particular quantum cascade structure display a much
smaller uncertainty than the absolute values. Therefore, we will concentrate in the following
on experimental results obtained from sample A.

4.2.1. Transport oscillations at different current densities. In a first series of experiments, the
wavepacket motion of electrons was studied as a function of the current density j . In figure 8,
we present data for current densities between 70 A cm−2 and 8 kA cm−2. The injection
current of j = 70 A cm−2 is the lowest current density for which a significant current-induced
pump–probe signal is observed for tD > 100 fs. For even lower j (not shown; see figure 3
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Figure 8. Amplitude, frequency and damping of the coherent transport oscillation as a function
of the current density. (a) Dots: measured pump–probe transients from sample A at a detection
wavelength of λdet = 10 µm for different current densities (lattice temperature 10 K). Solid curves:
the slowly varying component of the signal (i.e., the component with frequencies below 1 THz).
(b) Dots: the oscillatory component of the signal, i.e., the slowly varying component has been
subtracted. Solid lines: exponentially decaying cosine fit curves (after convolution with the cross-
correlation of pump and probe) with amplitude A, angular frequency ωab and damping rate γab.
(c) Fourier transforms of the extracted oscillations (symbols) and fit curves (lines). (d) Current
density versus applied electric field. (e), (f) Amplitude (squares), frequency (circles) and damping
rate (diamonds) as a function of the current density.

in [22]) one finds only a signal due to coherent pump–probe coupling. This signal is centred
at tD = 0 and has an amplitude that depends strongly on the intensities of pump and probe
pulses. Although j = 70 A cm−2 is well below the range of current-induced quasi-stationary
gain ( j > 1 kA cm−2), still a pronounced gain oscillation occurs. For this low j the oscillation
has an extraordinarily long dephasing time of T2 = 350 fs. For higher current densities the
dephasing time shortens and the damping γab increases, as shown in figure 8(f). In contrast
to the damping, the oscillation frequency ωab (circles in figure 8(f)) depends only weakly on
the current density j . Since the current density is inherently connected to the applied electric
field (figure 8(d)), the dependence of ωab on the electric field is equally weak.

Such surprising findings can be understood from the electronic levels and wavefunctions
for different applied electric fields. In figure 9, the conduction band diagrams of sample A are
plotted together with probability densities |�(x)|2 for the relevant wavefunctions for different
electric fields. The energies in figure 9(a) show clearly that in the range of electric fields used
in the experiment (30–65 kV cm−1) there are three distinct anticrossings between the upper
laser state |3〉 and one of the levels in the preceding injector or in the active region with almost
identical tunnel splittings of h̄ωab ≈ 7 meV.
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Figure 9. (a) Energies of the electronic levels in the conduction band of sample A as a function
of the applied electric field (the zero of energy is the valence band maximum at z = 0). (b)–
(e) Conduction band diagrams with probability densities |�(x)|2 for the relevant eigenstates of the
electronic Hamiltonian for electric fields of (b) 30 kV cm−1, (c) 43 kV cm−1, (d) 59.5 kV cm−1

and (e) 66 kV cm−1 (see the arrows in (a)). The value in (d) is approximately equal to the laser
threshold.

Such results demonstrate that the dominant channel of electron transport through the
injection barrier is resonant tunnelling with relatively long decoherence times. In a real
quantum cascade structure with disorder caused by well width and alloy fluctuations together
with local fluctuations of the applied electric field, the major part of the current probably flows
in small spatial filaments that are in exact resonance for tunnelling through the injection barrier.
This picture also suggests oscillation frequencies of the electron wavepackets that are rather
insensitive to the current density j , as found in the experiments (figure 8).

An interesting situation occurs at 30 kV cm−1 (figure 9(b)), where the lower laser state
|2〉 in one period is in resonance with the upper laser state |3〉 in the next period. In this
situation—which closely resembles the experimental situation of figure 8 for j = 70 A cm−2—
the femtosecond gain depletion starts the corresponding |a〉–|b〉 quantum coherence leading
to a pronounced oscillation between gain and absorption on the |3〉–|2〉 transition without any
current-driven stationary gain before the impulsive excitation.

In conclusion, resonant tunnelling dominates the electron transport through the injection
barrier for applied fields between 30 and 60 kV cm−1, i.e., even for electric fields too
low to produce current-induced stationary gain. This behaviour is due to the comparably
long dephasing times of the |a〉–|b〉 quantum coherence. The dephasing rates (diamonds in
figure 8(f)) gradually increase with the current density j . This increase is caused by a higher
carrier temperature in the injector at higher current densities j leading to higher rates of
those scattering mechanisms responsible for the irreversible dephasing of the |a〉–|b〉 quantum
coherence. A detailed theoretical description of this phenomenon is still to come.

4.2.2. Influence of the lattice temperature on coherent electron transport. Resonant
tunnelling through the injection barrier is quite sensitive to the lattice temperature of the
quantum cascade structure. Using the same analysis as in figure 8, we show in figure 10 the
amplitude, frequency and damping rate of the coherent transport oscillation as a function of the
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Figure 10. Like in figure 8 we show the amplitude, frequency and damping of the coherent transport
oscillation as a function of the lattice temperature (current density 7 kA cm−2). Increasing the
lattice temperature leads to a significant reduction of the oscillation amplitude and to a pronounced
enhancement of the damping rate γab. For high lattice temperatures (e.g., at 170 K) one observes
an additional slow component of gain recovery at later times.

lattice temperature TL. In this series of measurements with sample A, the current density was
set to 7 kA cm−2. The energy of the pump pulse was 2.5 nJ; the energy of the probe pulse 75 pJ.

The oscillation amplitude decreases substantially when increasing the lattice temperature
from 20 to 170 K (squares in figure 10(d)). In addition, the damping rate γab (diamonds in
figure 10(e)) is enhanced moderately. In contrast, the current-induced stationary gain (this
manifests itself in �T/T0 at negative delay times in figure 10(a)) is almost independent of the
lattice temperature up to TL = 170 K. This shows that the population difference n3 − n2 � n3

remains nearly unchanged while raising TL from 10 to 170 K.
The strong decrease of the oscillation amplitude (squares in figure 10(d)), which is a

measure for the resonant tunnelling contribution to the gain recovery at an almost constant
oscillation frequency (circles in figure 10(e)), shows that an additional incoherent carrier
transfer from the injector into the upper laser subband |3〉 is activated by heating the crystal
lattice. Our experimental data give no specific information on the nature of this incoherent
transport. It could involve the following mechanisms:

(i) non-resonant tunnelling from thermally populated injector subbands at higher energies,
(ii) direct hopping over the injection barrier, i.e., thermal excitation of continuum states above

the barrier,
(iii) thermal activation of new scattering processes directly transferring carriers across the

injection barrier.
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Figure 11. Excitation density dependence of the gain saturation and recovery measured in sample A
at a detection wavelength of λdet = 10 µm for a current density of 7 kA cm−2 and a lattice
temperature of 10 K (labelling similar to figure 10). The pump intensity has a pronounced influence
on both the coherent transport oscillation and the additional slow component of gain recovery at
later times. For extremely low excitation densities (e.g., for 0.25 nJ) one observes quite small
oscillation amplitudes but rather long decay times up to 700 fs. At higher excitation densities (e.g.,
at 7.5 nJ) the oscillatory motion of the electrons becomes less important and the slow component of
gain recovery at later times dominates. (d) Dashed line: expected amplitude for a linear dependence
on the pump pulse energy.

Possible new scattering processes that can be activated through lattice heating are intrasubband
and intersubband scattering due to the absorption of longitudinal optical (LO) phonons.
The rate of any LO phonon absorption process is directly proportional to the LO phonon
distribution function. Using an equilibrium Bose–Einstein distribution function for the LO
phonons predicts that LO absorption processes set in significantly around TL = 150 K, in
close agreement with our experimental observations (figure 10).

For even higher lattice temperatures TL > 170 K, i.e., for temperatures at which quantum
cascade lasers made from this structure do not work any longer [28], one observes an additional
slow component of gain recovery at later times. A first indication of this component can
be observed for the pump–probe transient shown in figure 10. This effect is much more
pronounced for higher excitation densities as will be discussed in the following.

4.2.3. Excitation density dependence of gain saturation and recovery. We now discuss the
excitation density dependence of gain saturation and recovery. Figure 11 shows the amplitude,
frequency and damping of the coherent transport oscillation measured in sample A at a detection
wavelength of λdet = 10 µm for a current density of 7 kA cm−2 (threshold of the working
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QCL [28]) and a lattice temperature of 10 K. The pump energy has a pronounced influence on
both the coherent transport oscillation and the additional slow component of incoherent gain
recovery at late delay times. For extremely weak excitation (e.g., for 0.25 nJ in figure 11) one
observes a rather small oscillation amplitude and an extraordinarily long dephasing time of
T2 = 700 fs. Under such conditions of small signal excitation, the amplitude of the impulsively
excited gain oscillation A ≈ 0.1 is distinctly smaller than the electrically induced stationary
gain observed at negative delay times (figure 11(a)). The amplitude of the impulsively excited
gain oscillation depends almost linearly on the excitation density up to a pump pulse energy of
2.5 nJ (dashed line in figure 11(d)). Beyond this point, which corresponds to a full saturation
of the optical gain, we observe a slight decrease of the oscillation amplitude A, as seen from
the measurement with a pump pulse energy of 7.5 nJ shown in figure 11.

The saturation of the oscillation amplitude has a rather destructive influence on the
coherence time of the |a〉–|b〉 quantum coherence as shown in figure 11(e). This phenomenon
can be explained as follows: every stimulated emission process triggered by the ultrafast pump
pulse will bring the energy eE L − h̄ω23 into the carrier gas residing in the downstream injector
(e: elementary charge, E : applied electric field, L: length of one period of the quantum cascade
structure, h̄ω23: photon energy of the laser transition). The total excess energy pumped into
the electron gas of the injector is quite large in most of our experiments. A rough estimate
of the excess energy for a pump pulse completely saturating the electrically induced gain is
jτ3(eE L − h̄ω23)/(eNs) per carrier in the injector. For j = 7 kA cm−2 this estimate yields a
value of 25 meV/carrier, thus allowing for a considerable heating of the injector plasma. The
hotter the carrier gas the higher the scattering rates for irreversible dephasing of the |a〉–|b〉
quantum coherence. This leads to pronounced excitation-induced decoherence as observed in
the pump–probe experiments shown in figure 11.

4.2.4. Incoherent gain recovery at high excitation densities. The physical processes discussed
in the previous section also account for the incoherent gain recovery at later times observed for
high pump pulse energies (see the 7.5 nJ transient in figure 11(a)). Here, the oscillatory motion
of the electrons becomes less important and the slow component of gain recovery at later times
dominates. Ultrafast thermalization due to the strong Coulomb interaction among the carriers
forms a unified plasma of electrons in the upper laser subband and in the preceding injector
at an elevated carrier temperature. The population inversion n3–n2 depends sensitively on the
carrier temperature TC through thermal back filling of lower laser subband |2〉 and depopulation
of the subbands |a〉 and |b〉 by redistribution of carriers among several subbands within the
injector. As a result, the slow dynamics of gain recovery at later times contains a significant
contribution of heating and cooling dynamics of the electron plasma in the upper laser subband
and the preceding injector.

In figure 12, we show pump–probe transients using a high excitation density (pump pulse
energy: 7.5 nJ) for sample A for different lattice temperatures TL (current density 7 kA cm−2).
At low temperatures, e.g., at 10 K, the coherent electron transport through the injection barrier
still dominates. However, the time constant of the slow component of gain recovery at later
times increases with lattice temperature and dominates for TL > 160 K.

This behaviour is in agreement with the physical picture of plasma heating and cooling
discussed above. The temperature dependent pump–probe signal (figure 12) shows a
decreasing stationary gain for lattice temperatures above TL = 200 K. The electrons excited by
the pump pulse considerably heat up the entire electron gas as shown by the estimate presented
in the previous section. Hence, for strong heating, we expect also a contribution to the pump–
probe signal from the cooling of the heated electron gas. This is shown schematically in
figure 13(a). In quasi-stationary equilibrium, the carrier temperature is T eq

C and a certain gain
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Figure 12. Pump–probe transients of the gain saturation and recovery using high excitation density
(7.5 nJ) to sample A for different lattice temperatures TL at a current density of 7 kA cm−2. Whereas
at low temperatures the coherent electron transport through the injection barrier (i.e., the oscillatory
motion) dominates, the amplitude and the recovery time constant of the slow component of gain
recovery increase with the lattice temperature and dominate for TL > 160 K.
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Figure 13. Schematics for the heating of the electron gas due to a strong pump pulse. (a) In quasi-
stationary equilibrium the carrier temperature is T eq

C . The pump-depleted electrons thermalize and
heat up the carrier distribution (T pump

C ), which subsequently cools down again to T eq
C . (b) Heating

of the electron gas for several lattice temperatures and pump pulse energies.

is observed. At zero delay time the pump pulse promotes the carriers from subband 3 into
subband 2. These ‘hot’ carriers thermalize on a sub-picosecond timescale [7] and heat up the
entire electron gas (T pump

C ) leading to a decrease of the gain for the reasons mentioned above.
Subsequently, the electron distribution cools down until it has reached T eq

C again.
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Figure 14. Pump–probe transients for sample A measured at a detection wavelength of λdet =
10.0 µm for various current densities j (lattice temperature: TL = 10 K). The pump pulse energy
is 7.5 nJ and the probe pulse energy is 250 pJ. The pump pulse is centred at 9.9 µm. In contrast to
the case for measurements at low excitation densities (cf figure 8) an additional slow component
of gain recovery at later times is observed. The amplitude of the slow gain recovery component
increases monotonically with the current density and dominates for j > 3 kA cm−2.

The heating and cooling dynamics is also observed in pump–probe transients measured
with high pumping levels (pump energy 7.5 nJ) for various current densities j (figure 14,
lattice temperature: TL = 10 K). In contrast to the case for measurements at low excitation
densities (figure 8), the additional slow component of gain recovery is observed at late delay
times. The amplitude of the slow gain recovery component increases monotonically with the
current density and dominates for j > 3 kA cm−2. The high current density brings the system
initially to an elevated carrier temperature TC, from which an identical scenario starts as in the
experiments shown in figure 12. Interestingly, for low current densities (e.g. 0.7 kA cm−2)
the pump initiated heating of the carrier gas leads after the decay of the oscillation to a higher
value of gain than electrically induced before the optical excitation. In this case the upper
laser subband is probably in resonance with an excited subband in the injector (e.g. figure 9(c))
which has to be thermally populated in order to maximize the optical gain at this low current
density.

The heating and cooling dynamics is even more pronounced for sample B (4.0 nm injection
barrier). Data for this sample measured at a lattice temperature of TL = 150 K are shown
in figure 15 for different current densities. Here the pump pulse energy is only 0.75 nJ. In
contrast to the case for sample A one observes an additional slow component of gain recovery
at later times also for these low excitation densities. The amplitude of the slow gain recovery
component increases monotonically with the current density and dominates for j > 6 kA cm−2.
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Figure 15. Pump–probe transients for sample B (4.0 nm injection barrier) measured at a detection
wavelength of λdet = 9.0 µm for various current densities (lattice temperature: TL = 150 K). The
pump pulse energy is 0.75 nJ and the probe pulse energy is 75 pJ. The pump pulse is centred at
9.0 µm. In contrast to the case for sample A one observes an additional slow component of gain
recovery at later times also for low excitation densities. The amplitude of the slow gain recovery
component increases monotonically with the current density and dominates for j > 6 kA cm−2.

5. Conclusions

In conclusion, we have presented a direct time-resolved study of coherent electron transport
in an electrically driven quantum cascade laser structure. The ultrafast quantum transport
of electrons from the injector into the upper laser state was investigated in femtosecond mid-
infrared pump–probe experiments. Our data clearly show that even at the high electron densities
present in a quantum cascade laser the coherence properties of the electron wavefunction
play an important role for the microscopic injection process. This process is crucial for
generating gain in quantum cascade lasers and represents a key step in the overall charge
transport through the device. Our results strongly support the empirical finding that the design
of the wavefunction overlap between the injector subbands and the upper laser subband is
essential for the performance of a quantum cascade laser. Theoretical calculations that include
both the quantum character of transport and the decoherence caused by electron–electron
scattering are still lacking and pose a challenge for the future.
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